Η Ηλεκτρομαγνητική ακτινοβολία είναι εκπομπή στον χώρο ηλεκτρομαγνητικής ενέργειας υπό μορφή κυμάτων που ονομάζονται ηλεκτρομαγνητικά κύματα. Τα ηλεκτρομαγνητικά κύματα είναι συγχρονισμένα ταλαντούμενα ηλεκτρικά και μαγνητικά πεδία τα οποία ταλαντώνονται σε κάθετα επίπεδα μεταξύ τους και κάθετα προς την διεύθυνση διάδοσης. Διαδίδονται στο κενό με ταχύτητα ίση με την ταχύτητα του φωτός (c=299.792.458 m/s) αλλά και μέσα στην ύλη με ταχύτητα λίγο μικρότερη απ' την ταχύτητα του φωτός.
Τα ηλεκτρομαγνητικά κύματα παράγονται από επιταχυνόμενα ηλεκτρικά φορτία. Δημιουργούνται επίσης όταν ένα ηλεκτρόνιο κάποιου ατόμου χάνει μέρος της ενέργειάς του και μεταπίπτει σε χαμηλότερη τροχιά ή ενεργειακή στάθμη κοντά στον πυρήνα. Αυτό έχει ως συνέπεια να δημιουργηθεί μια ταλάντωση που διαδίδεται πλέον στο χώρο με τη μορφή ενός ταυτόχρονα ηλεκτρικού και μαγνητικού πεδίου.
Ηλεκτρομαγνητικό φάσμα ονομάζεται το εύρος της περιοχής συχνοτήτων που καλύπτουν τα ηλεκτρομαγνητικά κύματα. Όλα τα ηλεκτρομαγνητικά κύματα έχουν τα γενικά χαρακτηριστικά των κυμάτων. Εφόσον όλα διαδίδονται στο κενό με την ταχύτητα c,η συχνότητα τους και το μήκος κύματος συνδέονται με τη σχέση: c=λ·f
Το σύμπαν είναι διάχυτο από ηλεκτρομαγνητική ακτινοβολία. Το φως που εκπέμπεται από τα άστρα είναι μέρος του συνολικού φάσματος της ηλεκτρομαγνητικής ακτινοβολίας που συναντάται στο σύμπαν. Η ηλεκτρομαγνητική ακτινοβολία ανάλογα με την συχνότητα των κυμάτων της και αντίστοιχα την ενέργεια που μεταφέρει χωρίζεται σε περιοχές. Αυτές είναι τα ραδιοκύματα, τα μικροκύματα, οι υπέρυθρες ακτίνες, το ορατό φως, οι υπεριώδεις ακτίνες, οι ακτίνες Χ και οι ακτίνες γάμμα. Όλες αυτές οι παραπάνω μορφές ηλεκτρομαγνητικής ακτινοβολίας κινούνται (ταξιδεύουν) με την ταχύτητα φωτός και μπορούν ακόμη να διαπεράσουν και ορισμένα υλικά.
Τα ραδιοκύματα για πρώτη φορά μελετήθηκαν από τον Σκοτσέζο μαθηματικό και φυσικό James Clerk Maxwell το 1867. Ο Maxwell παρατήρησε τις κυματοειδείς ιδιότητες του φωτός. Το 1887,ο Heinrich Hertz απέδειξε τις εξισώσεις του Maxwell πειραματικά δημιουργώντας ραδιοκύματα στο εργαστήριό του.
Για να λάβουμε ραδιοσήματα, για παράδειγμα από ραδιοφωνικούς σταθμούς AM/FM, πρέπει να χρησιμοποιήσουμε μια κεραία ραδιοφώνου. Ωστόσο, δεδομένου ότι η κεραία θα πάρει χιλιάδες ραδιοφωνικά σήματα σε μια στιγμή, είναι απαραίτητος ένας δέκτης ραδιοφώνου για να συντονιστούμε σε ένα συγκεκριμένο σήμα.
Αυτό γίνεται συνήθως μέσω ενός συντονιστή (στην απλούστερη μορφή του, ένα κύκλωμα με πυκνωτή και ένα πηνίο). Το αντηχείο έχει ρυθμιστεί ώστε να συντονίζεται σε μια συγκεκριμένη συχνότητα, επιτρέποντας στον δέκτη να ενισχύσει τα ημιτονοειδή κύματα.
Τα ραδιοκύματα χρησιμοποιούνται στη ραδιοφωνία και την τηλεόραση. Επίσης χρησιμοποιούνται για υπηρεσίες της σταθερής και της κινητής τηλεφωνίας, των ραδιοτηλεοπτικών εκπομπών, των ραντάρ και άλλων συστημάτων πλοήγησης, στις δορυφορικές επικοινωνίες, στα δίκτυα υπολογιστών και σε άλλες αμέτρητες εφαρμογές.
Για την αποφυγή παρεμβολών μεταξύ των διαφόρων χρηστών, η τεχνητή παραγωγή και η χρήση των ραδιοκυμάτων ρυθμίζεται αυστηρά από το νόμο και συντονίζεται από ένα διεθνή οργανισμό που ονομάζεται Διεθνής Ένωση Τηλεπικοινωνιών (ITU).
Τα μικροκύματα χωρίζονται σε τρεις επιμέρους ζώνες:
α) Στα δεκατομετρικά μικροκύματα (Ultra high frequency,UHF) (0.3-3 GHz),
β) Στα εκατοστομετρικά μικροκύματα (Super high frequency,SHF) (3-30 GHz),
γ) Στα χιλιοστομετρικά μικροκύματα (Extremely high frequency,EHF) (30-300 GHz).
Τα μικροκύματα έχουν πολύ περισσότερες εφαρμογές σε σχέση με τις άλλες ζώνες ραδιοκυμάτων λόγω του πλούσιου φάσματός τους.
Οι φούρνοι μικροκυμάτων με τους οποίους μαγειρεύουμε ή ζεσταίνουμε γρήγορα το φαγητό λειτουργούν με μικροκύματα. Στους φούρνους μικροκυμάτων οι μικροκυματικές συχνότητες αλληλεπιδρούν με την ύλη.
Επίσης χρησιμοποιούνται για εκπομπή επίγειου τηλεοπτικού σήματος (UHF), στην εκπομπή δορυφορικού τηλεοπτικού σήματος αλλά και στις δορυφορικές επικοινωνίες γενικότερα.
Εφαρμόζονται ακόμα στην κινητή τηλεφωνία, στην εφαρμογή Wi-Fi, στο πρότυπο ανταλλαγής αρχείων Bluetooth και στα Ραντάρ.
Υπέρυθρη ακτινοβολία είναι η ακτινοβολία που καλύπτει την περιοχή από 1 mm έως 7x10-7 m περίπου. Η υπέρυθρη ακτινοβολία ή υπέρυθρες ακτίνες είναι τμήμα του φάσματος της ηλεκτρομαγνητικής ακτινοβολίας. Στο φάσμα τοποθετούνται ως μικρότερη συχνότητα στην προέκταση της κόκκινης ορατής ακτινοβολίας. Γι' αυτό και το όνομα «υπέρυθρες» (υπό του ερυθρού).
Τα κύματα αυτά εκπέμπονται από τα θερμά σώματα και απορροφώνται εύκολα από τα περισσότερα υλικά. Η υπέρυθρη ακτινοβολία που απορροφάται από ένα σώμα αυξάνει το πλάτος της ταλάντωσης των σωματιδίων από τα οποία αποτελείται, αυξάνοντας έτσι τη θερμοκρασία του.
Η Υπέρυθρη Θέρµανση δεν διαφέρει σε τίποτε από την οικεία, ευεργετική θερµότητα που δεχόµαστε από τον ήλιο στην καθημερινότητα µας και φυσικά, δεν είναι σε καµία περίπτωση επιβλαβής για τον άνθρωπο. Συνήθως εκπέμπονται από όλα τα σώματα που έχουν κάποια θερμοκρασία. Τα σώματα με τη μεγαλύτερη θερμοκρασία εκπέμπουν περισσότερες υπέρυθρες και αντίστροφα τα σώματα που απορροφούν περισσότερες υπέρυθρες αυξάνεται η θερμοκρασία τους.
Μερικές από τις ιδιότητες των υπερύθρων είναι οι εξής:
α) Απορροφώνται επιλεκτικά από διάφορα σώματα και προκαλούν αύξηση της θερμοκρασίας τους.
β) Διέρχονται μέσα από την ομίχλη και τα σύννεφα (δεν απορροφώνται από αέρια).
γ) Δεν έχουν χημική δράση και δεν προκαλούν φωσφορισμό.
Η κυριότερη πηγή της ορατής ακτινοβολίας είναι βέβαια ο ήλιος, αλλά οι πηγές της μη ορατής ακτινοβολίας είναι πολλές. Ο ήλιος είναι μια τέτοια πηγή μη ορατής ακτινοβολίας. Στο εσωτερικό των διάφορων χώρων η ορατή ακτινοβολία προέρχεται από πηγές τεχνητού φωτός, όπως μια λάμπα πυρακτώσεως. Επίσης το ορατό φως παράγεται από την ανακατανομή των ηλεκτρονίων στα άτομα και στα μόρια. Όταν βλέπουμε ένα χρώμα, π.χ. κίτρινο σημαίνει ότι υπάρχει κάποια ακτινοβολία στα 590 nm. Αυτό όμως δεν είναι απόλυτο, γιατί κίτρινο πάλι μπορούμε να βλέπουμε αν έχουμε δύο ακτινοβολίες με μήκη κύματος κοντά στα 590 και 600 nm.
Προσεγγιστικά τα μήκη κύματος των διαφόρων χρωμάτων του ορατού φάσματος είναι:
700 έως 630 nm Ερυθρό
630 έως 590 nm Πορτοκαλί
590 έως 560 nm Κίτρινο
560 έως 480 nm Πράσινο
480 έως 440 nm Κυανό
440 έως 400 nm Ιώδες
Μια ακτινοβολία που περιέχει μήκη κύματος σε μια πολύ στενή περιοχή χαρακτηρίζεται μονοχρωματική. Για παράδειγμα, μια ακτινοβολία από 490 έως 491 nm είναι μια πράσινη μονοχρωματική ακτινοβολία. Τέτοια ακτινοβολία μπορούμε να πάρουμε με τη χρήση ειδικών πηγών ή φίλτρων. Όταν χρησιμοποιούμε την έκφραση «μονοχρωματικό φως με μήκος κύματος 580 nm» στην πραγματικότητα εννοούμε φως σε μια στενή περιοχή μηκών κύματος γύρω στα 580 nm. Το απόλυτα μονοχρωματικό φως, δηλαδή το φως που αποτελείται μόνο από ένα μήκος κύματος, αποτελεί μια εξιδανίκευση. Τα λέιζερ παράγουν φως που πλησιάζει πολύ στο απόλυτα μονοχρωματικό.
Το όζον της στρατόσφαιρας, απορροφά κατά κύριο λόγο την επικίνδυνη υπεριώδη ακτινοβολία. Σήμερα ανησυχούμε για την πιθανή καταστροφή αυτής της προστατευτικής ασπίδας ενάντια στις υπεριώδεις ακτίνες του Ήλιου. Το όζον της στρατόσφαιρας μειώνεται εξαιτίας εκτεταμένης χρήσης των χλωροφθορανθράκων, ενώσεων που χρησιμοποιούνται στα ψυγεία, τα κλιματιστικά τους ψεκαστήρες και αλλού.
Υπάρχουν τρία είδη υπεριώδους ακτινοβολίας:
α) UV-A: Αυτή η ακτινοβολία κυμαίνεται στο κενό μεταξύ 315 και 400 nm.
Είναι το πιο ακίνδυνο είδος.
β) UV-B: Αυτή η ακτινοβολία κυμαίνεται στο κενό μεταξύ 280 και 315 nm.
Αυτή προκαλεί το μαύρισμα,αλλά μπορεί να γίνει επικίνδυνη.
γ) UV-Γ: Αυτή η ακτινοβολία κυμαίνεται στο κενό μεταξύ 40 nm και 280 nm.
Είναι το πιο επικίνδυνο είδος της υπεριώδους ακτινοβολίας,καθώς με αυτήν έχουν επιτευχθεί εργαστηριακά μεταλλάξεις.
Αν και η υπεριώδης ακτινοβολία δεν είναι ορατή με γυμνό μάτι, μερικές από τις ιδιότητες της μας πληροφορούν για την ύπαρξή της:
α) Προκαλεί αμαύρωση των φωτογραφικών πλακών.
β) Προκαλεί το φθορισμό σε διάφορα σώματα,όταν δηλαδή προσπίπτει σε ορισμένα σώματα, τότε αυτά εκπέμπουν χαρακτηριστικές ορατές ακτινοβολίες.
γ) Συμμετέχει στη μετατροπή του οξυγόνου της ατμόσφαιρας σε όζον.
δ) Όταν απορροφάται από υλικά σώματα (όπως άλλωστε και οι ακτίνες οποιουδήποτε χρώματος),προκαλεί τη θέρμανση τους.
ε) Υπεριώδης ακτινοβολία με πολύ μικρό μήκος κύματος προκαλεί βλάβες στα κύτταρα του δέρματος,οι οποίες μπορεί να είναι τέτοιες,ώστε να οδηγήσουν και στην εμφάνιση καρκίνου.Κατά τη διάρκεια της ηλιοθεραπείας το μαύρισμα του δέρματος οφείλεται στη μελανίνη που παράγει ο οργανισμός, για να προστατευθεί από την υπεριώδη ακτινοβολία.
στ) Χρησιμοποιείται στην Ιατρική για πλήρη αποστείρωση διάφορων εργαλείων.
Το δέρμα και τα μάτια είναι τα όργανα που υφίσταται την μεγαλύτερη έκθεση στις υπεριώδεις ακτίνες του ήλιου.Αν και τα μαλλιά και τα νύχια είναι περισσότερο εκτεθειμένα,είναι λιγότερο σημαντικά από ιατρικής άποψης.Η έκθεση στην ηλιακή υπεριώδη ακτινοβολία μπορεί να καταλήξει σε άμεσα και σε χρόνια προβλήματα υγείας του δέρματος, των ματιών και του ανοσοποιητικού συστήματος,καθώς και σε βλάβες στο DNA.
Το φάσμα της ακτινοβολίας Χ είναι σύνθετο.Αποτελείται από ένα συνεχές φάσμα πάνω στο οποίο εμφανίζονται μερικές γραμμές (γραμμικό φάσμα).Τα δύο είδη φάσματος οφείλονται σε δύο διαφορετικές διεργασίες παραγωγής και εκπομπής των ακτίνων Χ.
α) Γραμμικό φάσμα:
Τα κινούμενα ηλεκτρόνια συγκρούονται με τα άτομα του υλικού της ανόδου.Τα άτομα της ανόδου διεγείρονται.Ένα ηλεκτρόνιο των εσωτερικών στιβάδων του ατόμου μεταπηδά σε άλλη επιτρεπόμενη τροχιά μεγαλύτερης ενέργειας.Η κενή θέση του ηλεκτρονίου μπορεί να συμπληρωθεί από ένα ηλεκτρόνιο του ατόμου που βρίσκεται στις εξωτερικές στιβάδες, με ταυτόχρονη εκπομπή ενός φωτονίου.Επειδή οι επιτρεπόμενες τιμές της ενέργειας του ατόμου είναι καθορισμένες,οι συχνότητες των φωτονίων που εκπέμπονται θα είναι καθορισμένες.Το φάσμα του φωτός που εκπέμπει το άτομο θα αποτελείται από γραμμές που είναι χαρακτηριστικές του υλικού της ανόδου. Επειδή η ενέργεια που απαιτείται,για να εκδιωχθεί ένα ηλεκτρόνιο από μια εσωτερική τροχιά,είναι μεγάλη,θα πρέπει και η ενέργεια του ηλεκτρονίου που προκαλεί τη διέγερση να είναι μεγάλη.Επομένως απαιτείται το ηλεκτρόνιο να έχει επιταχυνθεί από μεγάλη διαφορά δυναμικού.
β) Συνεχές φάσμα:
Ένα ηλεκτρόνιο μπορεί να επιβραδυνθεί εξαιτίας της αλληλεπίδρασής του με τα άτομα του στόχου.Όπως έχουμε αναφέρει,ένα επιταχυνόμενο (ή επιβραδυνόμενο) φορτίο εκπέμπει ακτινοβολία.Η απώλεια της κινητικής ενέργειας (Κα-Κτ) του ηλεκτρονίου θα είναι ίση με την ενέργεια του φωτονίου h f που εκπέμπεται. Το ηλεκτρόνιο μπορεί να χάσει όλη ή οποιοδήποτε μέρος της ενέργειάς του σε μία κρούση,δηλαδή μπορεί να ακινητοποιηθεί μετά από μία ή περισσότερες κρούσεις.Επειδή κατά τις κρούσεις των ηλεκτρονίων με τα άτομα του στόχου τα ηλεκτρόνια μπορεί να χάσουν οποιοδήποτε μέρος της ενέργειάς τους,συμπεραίνουμε ότι τα φωτόνια που εκπέμπονται θα έχουν οποιαδήποτε τιμή ενέργειας,που θα είναι μικρότερη ή ίση της αρχικής ενέργειας του ηλεκτρονίου.Επομένως το φάσμα της ακτινοβολίας αυτής θα είναι συνεχές.
Όταν οι ακτίνες Χ διαπερνούν οποιοδήποτε υλικό, τότε ένα μέρος της ακτινοβολίας απορροφάται από το υλικό.Η απορρόφηση της ακτινοβολίας εξαρτάται από τη φύση του υλικού,το μήκος κύματος της ακτινοβολίας και το πάχος του υλικού:
α) Όσο μεγαλύτερος είναι ο ατομικός αριθμός Ζ των ατόμων του υλικού που απορροφά την ακτινοβολία τόσο μεγαλύτερη είναι η απορρόφηση της ακτινοβολίας.
β) Όταν οι ακτίνες Χ διαπερνούν μια πλάκα,που έχει ορισμένο πάχος, τότε η απορρόφηση των ακτίνων αυξάνεται όσο αυξάνεται το μήκος κύματος της ακτινοβολίας.Οι ακτίνες Χ που έχουν μικρά μήκη κύματος είναι περισσότερο διεισδυτικές και ονομάζονται σκληρές ακτίνες,ενώ οι ακτίνες που έχουν μεγάλα μήκη κύματος είναι λιγότερο διεισδυτικές και ονομάζονται μαλακές ακτίνες.
γ) Όσο το πάχος του υλικού είναι μεγαλύτερο τόσο μεγαλύτερη είναι και η απορρόφηση της ακτινοβολίας μέσα στο υλικό αυτό.
Οι ακτίνες Χ προκαλούν βλάβες στους οργανισμούς.Όταν απορροφηθούν από τους ιστούς,διασπούν τους μοριακούς δεσμούς και δημιουργούν ενεργές ελεύθερες ρίζες,που με τη σειρά τους μπορεί να διαταράξουν τη μοριακή δομή των πρωτεϊνών και ειδικά του γενετικού υλικού (DNA).Αν το κύτταρο που έχει υποστεί βλάβη από την ακτινοβολία επιβιώσει,τότε μπορεί να δώσει πολλές γενεές μεταλλαγμένων κυττάρων.Αν οι αλλαγές στο DNA αφορούν γονίδια που ελέγχουν το ρυθμό πολλαπλασιασμού των κυττάρων,οι ακτίνες Χ μπορεί να προκαλέσουν καρκίνο.Η υπερβολική έκθεση ενός οργανισμού σε ακτινοβολία μπορεί να προκαλέσει μεταβολές στα γενετικά κύτταρα.Σ' αυτή την περίπτωση, ενώ ο ίδιος οργανισμός δε θα εμφανίσει κάποια βλάβη,θα επηρεαστούν οι απόγονοι του.Η χρήση των ακτίνων Χ για διαγνωστικούς και θεραπευτικούς σκοπούς πρέπει να γίνεται με προσοχή,εκτιμώντας τόσο τα οφέλη όσο και τους κινδύνους που προέρχονται από την έκθεση του οργανισμού σε ακτινοβολία για μεγάλο χρονικό διάστημα.
Οι ακτίνες γ παράγονται από ραδιενεργούς πυρήνες και από αστέρια στο διάστημα.Οι ραδιενεργοί πυρήνες προκύπτουν από ορυκτά με περιεκτικότητα σε ραδιενεργή ουσία,από απόβλητα πυρηνικών αντιδραστήρων.Επίσης,από την αντίδραση της ηλιακής ακτινοβολίας με την ατμόσφαιρα,κατά την οποία παράγεται το ισότοπο Άνθρακας-14 το οποίο περνά στα φυτά κι από εκεί σε όλην την τροφική αλυσίδα.Γενικά,κάθε ουσία,περιέχει ένα ελάχιστο ραδιενεργό ποσοστό της που παράγει ακτίνες γ.Τα αστέρια εκπέμπουν ενέργεια με μορφή ηλεκτρομαγνητικής ακτινοβολίας σε όλα τα μήκη κύματος.
Κυριότερες πηγές ακτίνων γ θεωρητικά είναι οι αστέρες νετρονίων και οι μαύρες τρύπες.Η ανακάλυψη ισχυρής πηγής ακτίνων γ από το κέντρο του γαλαξία μας ενισχύει την επιστημονική άποψη ότι στο κέντρο του βρίσκεται μια μεγάλη μαύρη τρύπα.
Εφαρμογές των ακτίνων γ:
Οι ακτίνες γ έχουν ιατρικές εφαρμογές και χρησιμοποιούνται σε εργαστηριακές μελέτες.Χρησιμοποιούνται στις ακτινογραφίες για την απεικόνιση του εσωτερικού του σώματος.Στις ακτινογραφίες χρησιμοποιούνται οι ακτίνες Χ,οι οποίες παράγονται εκείνη τη στιγμή από εξωτερική πηγή και διαπερνούν το σώμα.Μία τεχνική που χρησιμοποιεί τις ακτίνες γ είναι το σπινθηρογράφημα,όπου η ακτινοβολία παράγεται από ένα ραδιενεργό υγρό που έχει χορηγηθεί στον εξεταζόμενο.
Στην αποστείρωση χρησιμοποιείται στην πλήρη αποστείρωση τροφίμων εξοντώνοντας όλους τους μικροργανισμούς και διατηρώντας τις θρεπτικές ουσίες.
Επίσης οι ακτίνες γ έχουν εφαρμογή και στην Ραδιοχρονολόγηση.Ο άνθρακας που κυκλοφορεί στους ζωντανούς οργανισμούς είναι το ισότοπο άνθρακας 14 που είναι ραδιενεργό.Αυτό αποθηκεύεται στους ιστούς και όταν ο οργανισμός πεθάνει,απολιθωθεί και ανακαλυφθεί ο οργανισμός,εκπέμπει εξαιτίας του άνθρακα ακτίνες γ,οι οποίες εξαρτώνται από τη διάρκεια της απολίθωσης.
Τέλος οι ακτίνες γ έχουν εφαρμογή και στην Εξέλιξη. Η ραδιενεργή ακτινοβολία του διαστήματος,ειδικά πριν το σχηματισμό της ατμόσφαιρας,συνέβαλλε στις μεταλλάξεις των ειδών άρα και στην εξέλιξη.
Όργανα μέτρησης φάσματος, φασματογράφος
Το φως αποτελείται από ηλεκτρομαγνητικά κύματα που όταν αλληλεπιδρούν με την ύλη απορροφούνται σκεδάζονται, ανακλώνται ή διαδίδονται μέσα σε αυτή. Μελετώντας την αλληλεπίδραση του φωτός με την ύλη, μπορούμε να πάρουμε πληροφορίες σχετικά με τη δομή της ύλης και γενικότερα την ποιότητα και την ποσότητα της. Για την ακριβέστερη ανάλυση της ύλης αναπτύχθηκαν κατάλληλα οπτικά συστήματα, οι φασματογράφοι (ή φασματοσκόπια απορρόφησης), που μπορούν να κάνουν αυτόματα, γρήγορα και αξιόπιστα ανάλυση του φάσματος του φωτός αφού αλληλεπιδράσει με την ύλη. Μετρώντας την απορρόφηση μιας δέσμης φωτός συγκεκριμένου μήκους κύματος από ένα δείγμα και κατασκευάζοντας την καμπύλη απορρόφησης-συγκέντρωσης, μπορούμε να βγάλουμε χρήσιμα συμπεράσματα για το είδος, τη δομή και τη συγκέντρωση μιας ουσίας που περιέχεται στο δείγμα.
Φάσματα εκπομπής που αποτυπώνομαι στο φιλμ του φασματογράφου:
(α) λαμπτήρα πυρακτώσειως,
(β) λαμπτήρα νατρίου.
Πηγές:
pemptousia.gr
el.wikipedia.org
astronomia.gr
sfak.org
aristoteleioastronomia.weebly.com
astro.noa.gr
Τα ηλεκτρομαγνητικά κύματα παράγονται από επιταχυνόμενα ηλεκτρικά φορτία. Δημιουργούνται επίσης όταν ένα ηλεκτρόνιο κάποιου ατόμου χάνει μέρος της ενέργειάς του και μεταπίπτει σε χαμηλότερη τροχιά ή ενεργειακή στάθμη κοντά στον πυρήνα. Αυτό έχει ως συνέπεια να δημιουργηθεί μια ταλάντωση που διαδίδεται πλέον στο χώρο με τη μορφή ενός ταυτόχρονα ηλεκτρικού και μαγνητικού πεδίου.
Φάσμα ηλεκτρομαγνητικής ακτινοβολίας.
Το σύμπαν είναι διάχυτο από ηλεκτρομαγνητική ακτινοβολία. Το φως που εκπέμπεται από τα άστρα είναι μέρος του συνολικού φάσματος της ηλεκτρομαγνητικής ακτινοβολίας που συναντάται στο σύμπαν. Η ηλεκτρομαγνητική ακτινοβολία ανάλογα με την συχνότητα των κυμάτων της και αντίστοιχα την ενέργεια που μεταφέρει χωρίζεται σε περιοχές. Αυτές είναι τα ραδιοκύματα, τα μικροκύματα, οι υπέρυθρες ακτίνες, το ορατό φως, οι υπεριώδεις ακτίνες, οι ακτίνες Χ και οι ακτίνες γάμμα. Όλες αυτές οι παραπάνω μορφές ηλεκτρομαγνητικής ακτινοβολίας κινούνται (ταξιδεύουν) με την ταχύτητα φωτός και μπορούν ακόμη να διαπεράσουν και ορισμένα υλικά.
Ζώνες του ηλεκτρομαγνητικού φάσματος | ||
---|---|---|
Περιοχή του φάσματος | Περιοχή συχνοτήτων | Ενέργεια φωτονίων |
Ραδιοκύματα | ||
Μικροκύματα | ||
υπέρυθρη ακτινοβολία | ||
ορατή ακτινοβολία | ||
υπεριώδης ακτινοβολία | ||
ακτίνες Χ | ||
ακτίνες γ | ||
Κοσμικές ακτίνες |
Ραδιοκύματα.
Είναι τα ηλεκτρομαγνητικά κύματα με μήκος κύματος από 105m έως μερικά εκατοστά. Δημιουργούνται από ηλεκτρονικά κυκλώματα, όπως τα κυκλώματα LC, και χρησιμοποιούνται στη ραδιοφωνία και την τηλεόραση.
Τα ραδιοκύματα για πρώτη φορά μελετήθηκαν από τον Σκοτσέζο μαθηματικό και φυσικό James Clerk Maxwell το 1867. Ο Maxwell παρατήρησε τις κυματοειδείς ιδιότητες του φωτός. Το 1887,ο Heinrich Hertz απέδειξε τις εξισώσεις του Maxwell πειραματικά δημιουργώντας ραδιοκύματα στο εργαστήριό του.
Για να λάβουμε ραδιοσήματα, για παράδειγμα από ραδιοφωνικούς σταθμούς AM/FM, πρέπει να χρησιμοποιήσουμε μια κεραία ραδιοφώνου. Ωστόσο, δεδομένου ότι η κεραία θα πάρει χιλιάδες ραδιοφωνικά σήματα σε μια στιγμή, είναι απαραίτητος ένας δέκτης ραδιοφώνου για να συντονιστούμε σε ένα συγκεκριμένο σήμα.
Αυτό γίνεται συνήθως μέσω ενός συντονιστή (στην απλούστερη μορφή του, ένα κύκλωμα με πυκνωτή και ένα πηνίο). Το αντηχείο έχει ρυθμιστεί ώστε να συντονίζεται σε μια συγκεκριμένη συχνότητα, επιτρέποντας στον δέκτη να ενισχύσει τα ημιτονοειδή κύματα.
Τα ραδιοκύματα χρησιμοποιούνται στη ραδιοφωνία και την τηλεόραση. Επίσης χρησιμοποιούνται για υπηρεσίες της σταθερής και της κινητής τηλεφωνίας, των ραδιοτηλεοπτικών εκπομπών, των ραντάρ και άλλων συστημάτων πλοήγησης, στις δορυφορικές επικοινωνίες, στα δίκτυα υπολογιστών και σε άλλες αμέτρητες εφαρμογές.
Για την αποφυγή παρεμβολών μεταξύ των διαφόρων χρηστών, η τεχνητή παραγωγή και η χρήση των ραδιοκυμάτων ρυθμίζεται αυστηρά από το νόμο και συντονίζεται από ένα διεθνή οργανισμό που ονομάζεται Διεθνής Ένωση Τηλεπικοινωνιών (ITU).
Μικροκύματα.
Το μήκος κύματος τους εκτείνεται από 30cm έως 1mm περίπου. Παράγονται από ηλεκτρονικά κυκλώματα. Οι φούρνοι μικροκυμάτων με τους οποίους μαγειρεύουμε ή ζεσταίνουμε γρήγορα το φαγητό λειτουργούν με κύματα αυτής της περιοχής. Μικροκύματα χρησιμοποιούν και τα ραντάρ.
Τα μικροκύματα χωρίζονται σε τρεις επιμέρους ζώνες:
α) Στα δεκατομετρικά μικροκύματα (Ultra high frequency,UHF) (0.3-3 GHz),
β) Στα εκατοστομετρικά μικροκύματα (Super high frequency,SHF) (3-30 GHz),
γ) Στα χιλιοστομετρικά μικροκύματα (Extremely high frequency,EHF) (30-300 GHz).
Τα μικροκύματα έχουν πολύ περισσότερες εφαρμογές σε σχέση με τις άλλες ζώνες ραδιοκυμάτων λόγω του πλούσιου φάσματός τους.
Οι φούρνοι μικροκυμάτων με τους οποίους μαγειρεύουμε ή ζεσταίνουμε γρήγορα το φαγητό λειτουργούν με μικροκύματα. Στους φούρνους μικροκυμάτων οι μικροκυματικές συχνότητες αλληλεπιδρούν με την ύλη.
Επίσης χρησιμοποιούνται για εκπομπή επίγειου τηλεοπτικού σήματος (UHF), στην εκπομπή δορυφορικού τηλεοπτικού σήματος αλλά και στις δορυφορικές επικοινωνίες γενικότερα.
Εφαρμόζονται ακόμα στην κινητή τηλεφωνία, στην εφαρμογή Wi-Fi, στο πρότυπο ανταλλαγής αρχείων Bluetooth και στα Ραντάρ.
Υπέρυθρα κύματα.
Καλύπτουν την περιοχή από 1mm έως 7 x 10-7 m περίπου. Τα κύματα αυτά εκπέμπονται από τα θερμά σώματα και απορροφώνται εύκολα από τα περισσότερα υλικά. Η υπέρυθρη ακτινοβολία που απορροφάται από ένα σώμα αυξάνει το πλάτος της ταλάντωσης των σωματιδίων από τα οποία αποτελείται, αυξάνοντας έτσι τη θερμοκρασία του.
Υπέρυθρη ακτινοβολία είναι η ακτινοβολία που καλύπτει την περιοχή από 1 mm έως 7x10-7 m περίπου. Η υπέρυθρη ακτινοβολία ή υπέρυθρες ακτίνες είναι τμήμα του φάσματος της ηλεκτρομαγνητικής ακτινοβολίας. Στο φάσμα τοποθετούνται ως μικρότερη συχνότητα στην προέκταση της κόκκινης ορατής ακτινοβολίας. Γι' αυτό και το όνομα «υπέρυθρες» (υπό του ερυθρού).
Τα κύματα αυτά εκπέμπονται από τα θερμά σώματα και απορροφώνται εύκολα από τα περισσότερα υλικά. Η υπέρυθρη ακτινοβολία που απορροφάται από ένα σώμα αυξάνει το πλάτος της ταλάντωσης των σωματιδίων από τα οποία αποτελείται, αυξάνοντας έτσι τη θερμοκρασία του.
Η Υπέρυθρη Θέρµανση δεν διαφέρει σε τίποτε από την οικεία, ευεργετική θερµότητα που δεχόµαστε από τον ήλιο στην καθημερινότητα µας και φυσικά, δεν είναι σε καµία περίπτωση επιβλαβής για τον άνθρωπο. Συνήθως εκπέμπονται από όλα τα σώματα που έχουν κάποια θερμοκρασία. Τα σώματα με τη μεγαλύτερη θερμοκρασία εκπέμπουν περισσότερες υπέρυθρες και αντίστροφα τα σώματα που απορροφούν περισσότερες υπέρυθρες αυξάνεται η θερμοκρασία τους.
α) Απορροφώνται επιλεκτικά από διάφορα σώματα και προκαλούν αύξηση της θερμοκρασίας τους.
β) Διέρχονται μέσα από την ομίχλη και τα σύννεφα (δεν απορροφώνται από αέρια).
γ) Δεν έχουν χημική δράση και δεν προκαλούν φωσφορισμό.
Η χρήση των υπερύθρων βασίζεται στην εκλεκτικότητά τους να απορροφώνται από την ύλη. Γι παράδειγμα στην Ιατρική, δέσμη υπέρυθρης ακτινοβολίας μεταδίδει θερμότητα σε ορισμένη περιοχή του σώματος. Επίσης με ειδικές φωτογραφικές μηχανές πετυχαίνεται φωτογράφιση ακόμη και όταν υπάρχει συννεφιά ή ομίχλη. Οι υπέρυθρες ακτίνες μπορούν να γίνουν αντιληπτές από ορισμένους οργανισμούς, όπως οι σκύλοι και τεχνητά με θερμικές κάμερες.
Το ορατό φως.
Είναι το μέρος εκείνο της ηλεκτρομαγνητικής ακτινοβολίας που ανιχνεύει ο ανθρώπινος οφθαλμός. Το μήκος κύματος του ορατού φωτός κυμαίνεται από 400 nm έως 700 nm (δηλαδή από 400 x 10-9m έως 700 x 10-9m). Το ορατό φως παράγεται από την ανακατανομή των ηλεκτρονίων στα άτομα και στα μόρια. Κάθε υποπεριοχή του ορατού φάσματος προκαλεί στον άνθρωπο την αίσθηση κάποιου συγκεκριμένου χρώματος.
Η κυριότερη πηγή της ορατής ακτινοβολίας είναι βέβαια ο ήλιος, αλλά οι πηγές της μη ορατής ακτινοβολίας είναι πολλές. Ο ήλιος είναι μια τέτοια πηγή μη ορατής ακτινοβολίας. Στο εσωτερικό των διάφορων χώρων η ορατή ακτινοβολία προέρχεται από πηγές τεχνητού φωτός, όπως μια λάμπα πυρακτώσεως. Επίσης το ορατό φως παράγεται από την ανακατανομή των ηλεκτρονίων στα άτομα και στα μόρια. Όταν βλέπουμε ένα χρώμα, π.χ. κίτρινο σημαίνει ότι υπάρχει κάποια ακτινοβολία στα 590 nm. Αυτό όμως δεν είναι απόλυτο, γιατί κίτρινο πάλι μπορούμε να βλέπουμε αν έχουμε δύο ακτινοβολίες με μήκη κύματος κοντά στα 590 και 600 nm.
Προσεγγιστικά τα μήκη κύματος των διαφόρων χρωμάτων του ορατού φάσματος είναι:
700 έως 630 nm Ερυθρό
630 έως 590 nm Πορτοκαλί
590 έως 560 nm Κίτρινο
560 έως 480 nm Πράσινο
480 έως 440 nm Κυανό
440 έως 400 nm Ιώδες
Μια ακτινοβολία που περιέχει μήκη κύματος σε μια πολύ στενή περιοχή χαρακτηρίζεται μονοχρωματική. Για παράδειγμα, μια ακτινοβολία από 490 έως 491 nm είναι μια πράσινη μονοχρωματική ακτινοβολία. Τέτοια ακτινοβολία μπορούμε να πάρουμε με τη χρήση ειδικών πηγών ή φίλτρων. Όταν χρησιμοποιούμε την έκφραση «μονοχρωματικό φως με μήκος κύματος 580 nm» στην πραγματικότητα εννοούμε φως σε μια στενή περιοχή μηκών κύματος γύρω στα 580 nm. Το απόλυτα μονοχρωματικό φως, δηλαδή το φως που αποτελείται μόνο από ένα μήκος κύματος, αποτελεί μια εξιδανίκευση. Τα λέιζερ παράγουν φως που πλησιάζει πολύ στο απόλυτα μονοχρωματικό.
Υπεριώδης ακτινοβολία.
Η ακτινοβολία αυτή καλύπτει τα μήκη κύματος από 3x10-7m έως 6x10-8m περίπου. Ο Ήλιος είναι ισχυρή πηγή υπεριώδους ακτινοβολίας. Οι υπεριώδεις ακτίνες είναι υπεύθυνες για το "μαύρισμα" όταν κάνουμε ηλιοθεραπεία, το καλοκαίρι. Μεγάλες δόσεις υπεριώδους ακτινοβολίας βλάπτουν τον ανθρώπινο οργανισμό. Το μεγαλύτερο μέρος της υπεριώδους ακτινοβολίας, που φτάνει στη Γη από τον Ήλιο απορροφάται από τα άτομα και τα μόρια της ανώτερης ατμόσφαιρας (στρατόσφαιρα).
Το όζον της στρατόσφαιρας, απορροφά κατά κύριο λόγο την επικίνδυνη υπεριώδη ακτινοβολία. Σήμερα ανησυχούμε για την πιθανή καταστροφή αυτής της προστατευτικής ασπίδας ενάντια στις υπεριώδεις ακτίνες του Ήλιου. Το όζον της στρατόσφαιρας μειώνεται εξαιτίας εκτεταμένης χρήσης των χλωροφθορανθράκων, ενώσεων που χρησιμοποιούνται στα ψυγεία, τα κλιματιστικά τους ψεκαστήρες και αλλού.
Υπάρχουν τρία είδη υπεριώδους ακτινοβολίας:
α) UV-A: Αυτή η ακτινοβολία κυμαίνεται στο κενό μεταξύ 315 και 400 nm.
Είναι το πιο ακίνδυνο είδος.
β) UV-B: Αυτή η ακτινοβολία κυμαίνεται στο κενό μεταξύ 280 και 315 nm.
Αυτή προκαλεί το μαύρισμα,αλλά μπορεί να γίνει επικίνδυνη.
γ) UV-Γ: Αυτή η ακτινοβολία κυμαίνεται στο κενό μεταξύ 40 nm και 280 nm.
Είναι το πιο επικίνδυνο είδος της υπεριώδους ακτινοβολίας,καθώς με αυτήν έχουν επιτευχθεί εργαστηριακά μεταλλάξεις.
Αν και η υπεριώδης ακτινοβολία δεν είναι ορατή με γυμνό μάτι, μερικές από τις ιδιότητες της μας πληροφορούν για την ύπαρξή της:
α) Προκαλεί αμαύρωση των φωτογραφικών πλακών.
β) Προκαλεί το φθορισμό σε διάφορα σώματα,όταν δηλαδή προσπίπτει σε ορισμένα σώματα, τότε αυτά εκπέμπουν χαρακτηριστικές ορατές ακτινοβολίες.
γ) Συμμετέχει στη μετατροπή του οξυγόνου της ατμόσφαιρας σε όζον.
δ) Όταν απορροφάται από υλικά σώματα (όπως άλλωστε και οι ακτίνες οποιουδήποτε χρώματος),προκαλεί τη θέρμανση τους.
ε) Υπεριώδης ακτινοβολία με πολύ μικρό μήκος κύματος προκαλεί βλάβες στα κύτταρα του δέρματος,οι οποίες μπορεί να είναι τέτοιες,ώστε να οδηγήσουν και στην εμφάνιση καρκίνου.Κατά τη διάρκεια της ηλιοθεραπείας το μαύρισμα του δέρματος οφείλεται στη μελανίνη που παράγει ο οργανισμός, για να προστατευθεί από την υπεριώδη ακτινοβολία.
στ) Χρησιμοποιείται στην Ιατρική για πλήρη αποστείρωση διάφορων εργαλείων.
Το δέρμα και τα μάτια είναι τα όργανα που υφίσταται την μεγαλύτερη έκθεση στις υπεριώδεις ακτίνες του ήλιου.Αν και τα μαλλιά και τα νύχια είναι περισσότερο εκτεθειμένα,είναι λιγότερο σημαντικά από ιατρικής άποψης.Η έκθεση στην ηλιακή υπεριώδη ακτινοβολία μπορεί να καταλήξει σε άμεσα και σε χρόνια προβλήματα υγείας του δέρματος, των ματιών και του ανοσοποιητικού συστήματος,καθώς και σε βλάβες στο DNA.
Οι ακτίνες X (ή ακτίνες Rontgen).
είναι ηλεκτρομαγνητική ακτινοβολία με μήκη κύματος από 10-8 m έως 10-13 m περίπου. Η πιο κοινή αιτία παραγωγής ακτίνων x είναι η επιβράδυνση ηλεκτρονίων που προσκρούουν με μεγάλη ταχύτητα σε ένα μεταλλικό στόχο. Οι ακτίνες X χρησιμοποιούνται στην ιατρική, κυρίως για διαγνωστικούς σκοπούς (ακτινογραφίες), και στη μελέτη των διαφόρων κρυσταλλικών δομών. Οι ακτίνες x μπορούν να προκαλέσουν βλάβες στους ζωντανούς οργανισμούς και γι' αυτό πρέπει να αποφεύγουμε την έκθεσή μας σ' αυτές χωρίς σοβαρό λόγο.
Το φάσμα της ακτινοβολίας Χ είναι σύνθετο.Αποτελείται από ένα συνεχές φάσμα πάνω στο οποίο εμφανίζονται μερικές γραμμές (γραμμικό φάσμα).Τα δύο είδη φάσματος οφείλονται σε δύο διαφορετικές διεργασίες παραγωγής και εκπομπής των ακτίνων Χ.
α) Γραμμικό φάσμα:
Τα κινούμενα ηλεκτρόνια συγκρούονται με τα άτομα του υλικού της ανόδου.Τα άτομα της ανόδου διεγείρονται.Ένα ηλεκτρόνιο των εσωτερικών στιβάδων του ατόμου μεταπηδά σε άλλη επιτρεπόμενη τροχιά μεγαλύτερης ενέργειας.Η κενή θέση του ηλεκτρονίου μπορεί να συμπληρωθεί από ένα ηλεκτρόνιο του ατόμου που βρίσκεται στις εξωτερικές στιβάδες, με ταυτόχρονη εκπομπή ενός φωτονίου.Επειδή οι επιτρεπόμενες τιμές της ενέργειας του ατόμου είναι καθορισμένες,οι συχνότητες των φωτονίων που εκπέμπονται θα είναι καθορισμένες.Το φάσμα του φωτός που εκπέμπει το άτομο θα αποτελείται από γραμμές που είναι χαρακτηριστικές του υλικού της ανόδου. Επειδή η ενέργεια που απαιτείται,για να εκδιωχθεί ένα ηλεκτρόνιο από μια εσωτερική τροχιά,είναι μεγάλη,θα πρέπει και η ενέργεια του ηλεκτρονίου που προκαλεί τη διέγερση να είναι μεγάλη.Επομένως απαιτείται το ηλεκτρόνιο να έχει επιταχυνθεί από μεγάλη διαφορά δυναμικού.
β) Συνεχές φάσμα:
Ένα ηλεκτρόνιο μπορεί να επιβραδυνθεί εξαιτίας της αλληλεπίδρασής του με τα άτομα του στόχου.Όπως έχουμε αναφέρει,ένα επιταχυνόμενο (ή επιβραδυνόμενο) φορτίο εκπέμπει ακτινοβολία.Η απώλεια της κινητικής ενέργειας (Κα-Κτ) του ηλεκτρονίου θα είναι ίση με την ενέργεια του φωτονίου h f που εκπέμπεται. Το ηλεκτρόνιο μπορεί να χάσει όλη ή οποιοδήποτε μέρος της ενέργειάς του σε μία κρούση,δηλαδή μπορεί να ακινητοποιηθεί μετά από μία ή περισσότερες κρούσεις.Επειδή κατά τις κρούσεις των ηλεκτρονίων με τα άτομα του στόχου τα ηλεκτρόνια μπορεί να χάσουν οποιοδήποτε μέρος της ενέργειάς τους,συμπεραίνουμε ότι τα φωτόνια που εκπέμπονται θα έχουν οποιαδήποτε τιμή ενέργειας,που θα είναι μικρότερη ή ίση της αρχικής ενέργειας του ηλεκτρονίου.Επομένως το φάσμα της ακτινοβολίας αυτής θα είναι συνεχές.
Όταν οι ακτίνες Χ διαπερνούν οποιοδήποτε υλικό, τότε ένα μέρος της ακτινοβολίας απορροφάται από το υλικό.Η απορρόφηση της ακτινοβολίας εξαρτάται από τη φύση του υλικού,το μήκος κύματος της ακτινοβολίας και το πάχος του υλικού:
α) Όσο μεγαλύτερος είναι ο ατομικός αριθμός Ζ των ατόμων του υλικού που απορροφά την ακτινοβολία τόσο μεγαλύτερη είναι η απορρόφηση της ακτινοβολίας.
β) Όταν οι ακτίνες Χ διαπερνούν μια πλάκα,που έχει ορισμένο πάχος, τότε η απορρόφηση των ακτίνων αυξάνεται όσο αυξάνεται το μήκος κύματος της ακτινοβολίας.Οι ακτίνες Χ που έχουν μικρά μήκη κύματος είναι περισσότερο διεισδυτικές και ονομάζονται σκληρές ακτίνες,ενώ οι ακτίνες που έχουν μεγάλα μήκη κύματος είναι λιγότερο διεισδυτικές και ονομάζονται μαλακές ακτίνες.
γ) Όσο το πάχος του υλικού είναι μεγαλύτερο τόσο μεγαλύτερη είναι και η απορρόφηση της ακτινοβολίας μέσα στο υλικό αυτό.
Οι ακτίνες Χ προκαλούν βλάβες στους οργανισμούς.Όταν απορροφηθούν από τους ιστούς,διασπούν τους μοριακούς δεσμούς και δημιουργούν ενεργές ελεύθερες ρίζες,που με τη σειρά τους μπορεί να διαταράξουν τη μοριακή δομή των πρωτεϊνών και ειδικά του γενετικού υλικού (DNA).Αν το κύτταρο που έχει υποστεί βλάβη από την ακτινοβολία επιβιώσει,τότε μπορεί να δώσει πολλές γενεές μεταλλαγμένων κυττάρων.Αν οι αλλαγές στο DNA αφορούν γονίδια που ελέγχουν το ρυθμό πολλαπλασιασμού των κυττάρων,οι ακτίνες Χ μπορεί να προκαλέσουν καρκίνο.Η υπερβολική έκθεση ενός οργανισμού σε ακτινοβολία μπορεί να προκαλέσει μεταβολές στα γενετικά κύτταρα.Σ' αυτή την περίπτωση, ενώ ο ίδιος οργανισμός δε θα εμφανίσει κάποια βλάβη,θα επηρεαστούν οι απόγονοι του.Η χρήση των ακτίνων Χ για διαγνωστικούς και θεραπευτικούς σκοπούς πρέπει να γίνεται με προσοχή,εκτιμώντας τόσο τα οφέλη όσο και τους κινδύνους που προέρχονται από την έκθεση του οργανισμού σε ακτινοβολία για μεγάλο χρονικό διάστημα.
Οι ακτίνες γ.
Είναι ηλεκτρομαγνητική ακτινοβολία που εκπέμπεται από ορισμένους ραδιενεργούς πυρήνες καθώς και σε αντιδράσεις πυρήνων και στοιχειωδών σωματιδίων ή ακόμα και κατά τη διάσπαση στοιχειωδών σωματιδίων. Τα μήκη κύματος τους αρχίζουν από 10-10 m και φτάνουν ως τα 10-14 m. Είναι πολύ διεισδυτικές και βλάπτουν τους οργανισμούς που τις απορροφούν.
Οι ακτίνες γ παράγονται από ραδιενεργούς πυρήνες και από αστέρια στο διάστημα.Οι ραδιενεργοί πυρήνες προκύπτουν από ορυκτά με περιεκτικότητα σε ραδιενεργή ουσία,από απόβλητα πυρηνικών αντιδραστήρων.Επίσης,από την αντίδραση της ηλιακής ακτινοβολίας με την ατμόσφαιρα,κατά την οποία παράγεται το ισότοπο Άνθρακας-14 το οποίο περνά στα φυτά κι από εκεί σε όλην την τροφική αλυσίδα.Γενικά,κάθε ουσία,περιέχει ένα ελάχιστο ραδιενεργό ποσοστό της που παράγει ακτίνες γ.Τα αστέρια εκπέμπουν ενέργεια με μορφή ηλεκτρομαγνητικής ακτινοβολίας σε όλα τα μήκη κύματος.
Κυριότερες πηγές ακτίνων γ θεωρητικά είναι οι αστέρες νετρονίων και οι μαύρες τρύπες.Η ανακάλυψη ισχυρής πηγής ακτίνων γ από το κέντρο του γαλαξία μας ενισχύει την επιστημονική άποψη ότι στο κέντρο του βρίσκεται μια μεγάλη μαύρη τρύπα.
Εφαρμογές των ακτίνων γ:
Οι ακτίνες γ έχουν ιατρικές εφαρμογές και χρησιμοποιούνται σε εργαστηριακές μελέτες.Χρησιμοποιούνται στις ακτινογραφίες για την απεικόνιση του εσωτερικού του σώματος.Στις ακτινογραφίες χρησιμοποιούνται οι ακτίνες Χ,οι οποίες παράγονται εκείνη τη στιγμή από εξωτερική πηγή και διαπερνούν το σώμα.Μία τεχνική που χρησιμοποιεί τις ακτίνες γ είναι το σπινθηρογράφημα,όπου η ακτινοβολία παράγεται από ένα ραδιενεργό υγρό που έχει χορηγηθεί στον εξεταζόμενο.
Στην αποστείρωση χρησιμοποιείται στην πλήρη αποστείρωση τροφίμων εξοντώνοντας όλους τους μικροργανισμούς και διατηρώντας τις θρεπτικές ουσίες.
Επίσης οι ακτίνες γ έχουν εφαρμογή και στην Ραδιοχρονολόγηση.Ο άνθρακας που κυκλοφορεί στους ζωντανούς οργανισμούς είναι το ισότοπο άνθρακας 14 που είναι ραδιενεργό.Αυτό αποθηκεύεται στους ιστούς και όταν ο οργανισμός πεθάνει,απολιθωθεί και ανακαλυφθεί ο οργανισμός,εκπέμπει εξαιτίας του άνθρακα ακτίνες γ,οι οποίες εξαρτώνται από τη διάρκεια της απολίθωσης.
Τέλος οι ακτίνες γ έχουν εφαρμογή και στην Εξέλιξη. Η ραδιενεργή ακτινοβολία του διαστήματος,ειδικά πριν το σχηματισμό της ατμόσφαιρας,συνέβαλλε στις μεταλλάξεις των ειδών άρα και στην εξέλιξη.
Όργανα μέτρησης φάσματος, φασματογράφος
Το φως αποτελείται από ηλεκτρομαγνητικά κύματα που όταν αλληλεπιδρούν με την ύλη απορροφούνται σκεδάζονται, ανακλώνται ή διαδίδονται μέσα σε αυτή. Μελετώντας την αλληλεπίδραση του φωτός με την ύλη, μπορούμε να πάρουμε πληροφορίες σχετικά με τη δομή της ύλης και γενικότερα την ποιότητα και την ποσότητα της. Για την ακριβέστερη ανάλυση της ύλης αναπτύχθηκαν κατάλληλα οπτικά συστήματα, οι φασματογράφοι (ή φασματοσκόπια απορρόφησης), που μπορούν να κάνουν αυτόματα, γρήγορα και αξιόπιστα ανάλυση του φάσματος του φωτός αφού αλληλεπιδράσει με την ύλη. Μετρώντας την απορρόφηση μιας δέσμης φωτός συγκεκριμένου μήκους κύματος από ένα δείγμα και κατασκευάζοντας την καμπύλη απορρόφησης-συγκέντρωσης, μπορούμε να βγάλουμε χρήσιμα συμπεράσματα για το είδος, τη δομή και τη συγκέντρωση μιας ουσίας που περιέχεται στο δείγμα.
Φάσματα εκπομπής που αποτυπώνομαι στο φιλμ του φασματογράφου:
(α) λαμπτήρα πυρακτώσειως,
(β) λαμπτήρα νατρίου.
Πηγές:
pemptousia.gr
el.wikipedia.org
astronomia.gr
sfak.org
aristoteleioastronomia.weebly.com
astro.noa.gr